丹東新東方晶體儀器有限公司
聯系人:張經理
電 話:0415-6172363 13304155299
傳 真:0415-6181014
郵 箱:xdf@ddxdf.com
網 址:www.drharryburke.com
地 址:遼寧丹東環保產業園區A-050號
郵 編:118000
單晶材料以硅(Si)、砷化鎵(GaAs)為代表的一代和二代半導體材料的高速發展,推動了微電子、光電子技術的迅猛發展。然而受材料性能所限,這些半導體材料制成的器件大都只能在200℃以下的環境中工作,不能滿足現代電子技術對高溫、高頻、高壓以及抗輻射器件的要求。作為第三代寬帶隙半導體材料的代表,碳化硅(SiC)單晶材料具有禁帶寬度大(~Si的3倍)、熱導率高(~Si的3.3倍或GaAs的10倍)、電子飽和遷移速率高(~Si的2.5倍)和擊穿電場高(~Si的10倍或GaAs的5倍)等性質[1-2],如表1所示。SiC器件在高溫、高壓、高頻、大功率電子器件領域和航天、軍工、核能等環境應用領域有著不可替代的優勢[3-7],彌補了傳統半導體材料器件在實際應用中的缺陷,正逐漸成為功率半導體的主流。
按相同的方式一個Si原子也被四個碳原子的四面體包圍,屬于密堆積結構。單晶材料的晶格常數a可以看作常數,而晶格常數c不同,并由此構成了數目很多的SiC同質多型體。若把這些多型體看作是由六方密堆積的Si層組成,緊靠著Si原子有一層碳原子存在,在密排面上單晶材料雙原子層有三種不同的堆垛位置,稱為A、B和C。由于單晶材料雙原子層的堆垛順序不同,就會形成不同結構的SiC晶體。